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EQUILIBRIUM A N D  STABILITY OF TOKAMAKS 
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SUMMARY 

Axisymmetric, ideal MHD configurations with steady flow are computed by the finite-element method. 
Rectangular elements with four to nine nodes are used. The equilibria are obtained in flux co-ordinates by 
mesh rearrangement. The properties of the linearized motions around an equilibrium state are studied by a 
normal-mode analysis. Dissipation is taken into account. Applying the Galerkin method leads to a large- 
scale complex eigenvalue problem dx=lBx, which is solved by inverse iteration and by the Lanczos 
algorithm. 

1.  INTRODUCTION 

The objective of controlled thermonuclear fusion research is to derive nuclear energy from the 
fusion of light nuclei, such as deuterium and tritium, on an economic basis. In order to obtain a 
sufficient number of fusion processes in a high-temperature laboratory plasma with T> 10 keV 
(corresponding to a temperature of lo* K), the product of the particle density and the con- 
finement time has to exceed the value given by the Lawson criterion. The concept of magnetic 
confinement utilizes the fact that the ions gyrate around magnetic field lines, i.e. are tied to the 
field. Naturally, many instabilities tend to destroy favourable confinement configurations. The 
tokamak is at present the most advanced reactor concept. The large tokamaks in operation are 
close to achieving break-even, at which the energy generated equals that necessary to sustain the 
discharge. In the tokamak device the toroidal current induced in the plasma produces a poloidal 
magnetic field. Together with the toroidal field, this current yields an equilibrium and also heats 
the plasma. The principle of the tokamak is shown in Figure 1. The gross macroscopic properties 
of a laboratory plasma relating to equilibrium, stability and transport are of special interest. 
Magnetohydrodynamic theory (MHD) is the simplest self-consistent model describing the 
macroscopic behaviour. This model combines fluid equations with the Maxwell equations. The 
role of MHD theory is to discover magnetic geometries with favourable equilibrium and stability 
properties. Neglecting the flow and assuming isotropic pressure yields the well known Grad- 
Lust-Schluter-Shafranov equation for equilibria. Ideal MHD stability of these configurations is 
considered a necessary condition for successful operation of a tokamak. Dissipative pertur- 
bations, especially resistive modes, further reduce the stable region. 

Tokamak plasmas exhibit a global time scale, the energy confinement time, of the order of 1 s. 
In view of the much shorter time scales of instabilities-typical gross ideal MHD instabilities 
grow in microseconds-the plasma evolves through a sequence of MHD equilibria with good. in 
the optimum case with complete, stability properties. In the models commonly used, flows are 
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\ 
magnetic main'field transformer field line coil 

Figure 1. Tokamak schematic. A toroidal current is induced in the plasma, which acts as the second loop of a transformer. 
This current creates a poloidal magnetic field, which together with the main toroidal field establishes the equilibrium and 

heats the plasma by ohmic heating 

neglected. We have started on an approach for studying equilibria and linear and non-linear 
evolution of states which takes flows into account. 

This paper addresses the numerical solution of tokamak equilibrium and stability. Schemes 
based on finite elements are especially suited to modelling the geometry in the equilibrium and to 
yielding high-order resolution in the stability problem. The finite element method is therefore 
used for the computation of equilibria and for the linear normal-mode analysis. The non-linear 
simulation is based on finite difference schemes and is not discussed here. The normal-mode 
analysis is performed in a non-orthogonal flux co-ordinate system and leads to the non- 
symmetric matrix eigenvalue problem d x  = kBx, where the eigenvalue 1 is complex. It is 
emphasized that tokamak equilibria are required to be in flux co-ordinates for stability analysis. 

The paper is arranged as follows. Section 2 presents the general MHD model, from which 
simplified models for equilibrium and stability are derived by making specific assumptions. The 
numerical solution for tokamak equilibrium and stability is discussed in Section 3. Finally, 
Section 4 contains the summary and the conclusions. 

2. MHDMODEL 

The macroscopic plasma behaviour is described by single-fluid theory, where fluid equations are 
combined with Maxwell's equations. Here the displacement current in Ampere's law is neglected 
('pre-Maxwell' equations). The dissipative MHD equations for the density p, velocity u, scalar 
pressure p, temperature Tand magnetic field B in normalized dimensionless form read as follows: 

continuity 

a 
--p + V(pu) = 0; at 

momentum 
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energy 

a T  
p- = - p ~ . V T + ( y - 1 1 ) [ - p V . u - ~ :  Vu+V(.X*VT)]; (3) at 

Maxwell-Ohm 

a 
at 
- B = V X ( U X B - ~ J ) ;  (4) 

Maxwell 

V.B=O, ( 5 )  

J = V x B .  (6) 

The gravitational force pg is important for astrophysical applications, but can be neglected for 
fusion-relevant laboratory plasmas. The stress tensor 9' contains the anisotropic properties of the 
distribution function. In a strong magnetic field it basically contains parallel and perpendicular 
pressure components pII and pI. In leading order the parallel component of the stress tensor is 
retained, with only the parallel viscosity coefficient being kept. In the energy equation y denotes 
the ratio of the specific heats, which is, as usual, taken equal to 5/3. The dissipative effects are the 
viscosity p, the resistivity q and the heat conduction tensor X.  The plasma is assumed to be an 
ideal gas, i.e. 

p=pT. (7) 
An excellent discussion of M H D  theory is given in the books of Bateman' and Freidberg.' 

2.1. Equilibrium 

Since both the transport and the resistive time scales are much longer than the ideal Alfven time 
scale, it is appropriate to model the tokamak equilibrium by ideal MHD. 

Let us first recall the case without flow. To compute axisymmetric equilibria, it is convenient to 
work in cylindrical co-ordinates r, 6, z ,  with 6 being the ignorable co-ordinate. The stationary 
equations are obtained by setting a/dt=O, and the static equilibrium is given by u=O. Then the 
equilibrium relation reduces to 

(84  Vp=(V x B) x B, 

together with 
V.B=O. 

The magnetic field is represented as 

B=V8 x V$+FVO, (9) 
where is the poloidal flux and F is the poloidal current profile. Equation (8a) yields that both 
the pressure and the current profile depend on the flux only, i.e. p = p ( $ )  and F=F(+). The 
equilibrium is eventually given by the Grad-Lust-Schluter-Shafranov equation for the flux $, 

1 dF dp (T') r2 d$ d$ 
V -  +-F-+-=O, 

with two arbitrary profiles p ( $ )  and F($). Since the plasma boundary is a contour of constant 
pressure, $ is constant on the plasma boundary. 
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We now return to the case with flow. Heating power in the form of neutral beam injection 
substantially increases the plasma temperature above the level given by the Ohmic heating. 
Depending on the injection angle, this beam injection generates a flow in both the toroidal and 
the poloidal directions. The toroidal flow velocities can become quite large, i.e. up to ion sound 
speed. The magnitude of the poloidal flow is still not accurately determined. Poloidal flow is 
damped out, thereby increasing transport. This often leads to deterioration of confinement. The 
stationary equations are again obtained by setting a/at =0, and the absence of dissipation is 
expressed by the conservation of the entropy S. The caloric equation of state is 

p = s p y  (y=5/3) .  (1 1) 

u =  C@($)IPIB+r2Q($)ve, (12) 

The continuity equation V( pu) = 0 prompts representation of the velocity as 

where and R are flux functions. Note that the radial flow, i.e. diffusion, does not occur in steady- 
state equilibria. The analysis eventually yields algebraic and differential equations. The solutions 
for purely toroidal and for general flow are treated separately. Our model treats the temperature 
as constant along the field lines, i.e. T= T($), in conjunction with purely toroidal flow and as 
anisotropic when poloidal flow is included. This poloidal flow, although small, is strongly coupled 
with enhanced radial transport. 

For purely toroidal flow the temperature T is a surface quantity, i.e. T= T($), and we obtain, 
with R, = R/JT, 

P = P o ( $ )  exp (rZ% /a (13) 

or 

This equation has the form of the Grad-Lust-Schliiter-Shafranov equation with arbitrary 
profiles F, R,, p o  and T. 

The general flow case leads to two algebraic equations 

I (*) + rZ@R 
1 - @2/p ’ 

F =  

and the differential equation 

((’ -@r:’p)v’) + u - BW + p  1 F I ’  + p H ’ -  - 1 pyS’ =0, (17) Y-1 
V 

where the prime refers to d/d$. There are now additional functions 0, I, H and S depending only 
on $. This differential equation is elliptic for 

0 < YP/ (YP  + BZ) (18) 
and becomes hyperbolic for larger poloidal flow. Since transport estimates imply small poloidal 
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flow, we shall not be concerned with flows in the hyperbolic domain. There are then no additional 
difficulties in solving the algebraic equations (15) and (16). It must be ensured, however, that the 
choice of the free functions does not restrict the solvability, as pointed out in References 3 and 4. 

The plasma occupies the domain r and is surrounded by vacuum. In order to produce specific 
plasma boundaries, where the solution satisfies $ = $s on X, currents in external coils placed in 
the vacuum region are required. This represents a free surface boundary value problem, where the 
location and the strength of the individual currents have to be adjusted to produce the desired 
shape of the plasma cross-section. These techniques are described in Reference 4 and in more 
detail in Reference 5. Since the vacuum solution BVac and hence $vat are not needed for the 
stability and transport analysis, restriction to the fixed boundary case is possible. The emphasis is 
then on a high-accuracy solution suitable for the stability analysis. The plasma is thus assumed to 
be confined within a toroidal, rigid, perfect conductor with the boundary conditions of zero 
normal components of u and B at the wall. In the plasma region r the differential equation (17) or 
(14) has to be solved together with the algebraic equations. With the definition 

and abbreviation of the other terms by G ,  G =  G(r,  p ,  d / )  with p = p ( r ,  $,]V$l), we obtain 

V(kV$)+G=O in r, 
$ = g l  o n w ,  (20) 

a$/an=g2 on dr,, a-,uar,=ar. 
The boundary conditions are generalized to Dirichlet and von Neumann conditions. 

2.2. Stability 

The study of linearized motions has significantly contributed to the understanding of ideal and 
dissipative MHD plasma phenomena such as stability, wave propagation and heating. The 
theory of linearized perturbations uses an expansion around a simplified ideal equilibrium with o’r 
without flow, as described by equation (20), and linearizes the equations. This is then the place 
where dissipation is taken into account. The justification for this procedure is given by estimating 
the time scales of interest. The dissipation introduces finite damping to the motion of ideal MHD. 
However, the addition of dissipation can produce new instabilities by removing constraints from 
the ideal model and thereby making states of lower potential energy accessible to the plasma. 
Owing to the large temperature in a tokamak, the resistivity is quite small. However, the 
perturbation only needs to break the field in a thin layer within the plasma. If this layer thickness 
were comparable to the radius of the plasma, the perturbation would only evolve on the diffusion 
time scale. The perturbation takes into account resistivity in a small layer of width 60zq’ ’~  or qz/’ 
and connects to the ideal solution further out. The time scales for these instabilities are given by 
the growth rate Re I = A , o c ~ ’ ’ ~  or q3/’ and are located between the ideal and resistive diffusion 
time scales. Equally interesting is the question what kind of waves can be sustained in the plasma. 

A better understanding is given by estimating the thermal velocity and Alfven velocity for 
typical parameters (B2.40 kG, T - 2  keV, p -  1014 cm-3 and a =  100 cm): 

(2  1 a) q h - 5  x lO’cms-’, v A z 8  x lo8 cms-’. 

The corresponding time scales are in the microsecond range: 

Tlh=ff/U;hz2 x s = 2 p s ,  T A = a / U A N  s=o.1 ps. (2 1 b) 
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The quantities obtained from computations are normalized to the ideal Alfven velocity and ideal 
Alfven time. The resistive skin time across the plasma radius is 

zR = a2/u. (224 

s = T R / z ,  (22b) 

The parameter 

is called the magnetic Reynolds number and is of the order of 106-108 for hot tokamaks. The 
effect of dissipation on the entire spectrum of normal modes is discussed in detail for two different 
models, namely the resistive and the non-adiabatic models. The inclusion of resistivity describes 
perturbations which decouple the plasma from the magnetic field and clearly counteract the 
concept of magnetic confinement. The non-adiabatic model has zero resistivity but finite heat 
conductivity and describes, in conjunction with gravity, overstable motion in the convection zone 
of the Sun. The scheme is easily extended to more general cases such as finite flow in the 
equilibrium. 

All quantities are expanded around the equilibrium in the form 

f(r9 t )  =fo (r) +fi (4 en[. (23) 

The ansatz for the temporal dependence in the form of an exponential is suitable for the linearized 
system where only linear terms in the perturbations are kept. Here I is the eigenvalue. The 
imaginary part of I corresponds to oscillatory behaviour, while a negative real part yields 
damping and a positive real part an exponentially growing instability. 

With resistivity q, gravity g and thermal conductivity AT, the equations for the perturbed 
quantities p ,  u, T and b read 

@= -V.(PoU), (244 

(24b) 

(244 

L b = V x ( u x B o - ~ o V x b ) .  (244 

@ O U =  -V(poT+ Top)+pg+(V x B,) x b+(V x b) x Bo, 

IpoT= -POU VTo - ( y  - 1)po ToV * u + ( y  - l)V(Xo*VT), 

The condition V .  b =O is satisfied if Bo is divergence-free. In one version of our code V. b=O was 
used to eliminate b, when 8, b,amb,#O, i.e. m#O. For the general case a vector potential is 
introduced by 

b = V x a  and E=-La-VE. (25) 

The freedom in the gauge can be used to set the potential E or a specific component of a, e.g. a,, 
equal to zero. 

Note that no perturbation of the dissipation is taken into account. The system considered is a 
plasma-vacuum-wall system. To simulate such a system, it is only necessary to give the resistivity 
in the ‘vacuum’ a sufficiently large value, and the density, temperature and current small values. 
The boundary conditions at  the wall are 

n*u=O, n-b=O, nxE=O, (264 

n.VT=O if K ~ # O .  (26b) 

A state vector w for the perturbed quantities is introduced: 

wT = ( p ,  U, T, b). 
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The linear operators in equations (24a-24d) are represented by matrices 93 and 9, where in Y 
only the diagonal elements are non-zero and W contains differential operators and equilibrium 
quantities. The set of linearized equations then reads 

A Y W  = aw. (27) 
The ideal MHD spectrum consists of three branches. The spectrum of a typical large-aspect- 

ratio tokamak case is displayed in Figure 2. The fast magnetoacoustic waves yield a nearly 
transverse plasma motion, and most of the compression involves the magnetic field and not the 
plasma. These eigenvalues have an accumulation point at infinity, Im 2-00, where the radial 
wave number k ,  cc l/Ar becomes large. The second branch is the shear Alfven wave. This wave is 
also transverse and causes the field line to bend. This mode is incompressible. As is seen from 
Figure 2, the unstable modes emerge from this branch. The third branch reduces in the small- 
pressure limit to the sound modes. Note that the Alfven and sound mode branches usually extend 
to the origin A=O. The ratio of the largest to the smallest eigenvalue thus tends to infinity: 

A = max 121 /min )I1 4 00. 

This indicates that special care is necessary to ensure correct and accurate numerical repre- 
sentation of the entire spectrum. Analytic considerations prompt a special co-ordinate system, so- 
called ‘Hamada’ co-ordinates, aligned with magnetic field lines, i.e. in the axisymmetric configura- 
tions with magnetic surfaces. 

A special system is given by the non-orthogonal co-ordinates I), 8, x with the Jacobian 

where F is defined in equation (9) and q =q(t+b) is the safety factor. Note that in straight cylindrical 
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Figure 2. Complete ideal (q-0) spectrum of the constant current equilibrium. The square of the eigenvalues ( A = i o )  is 
plotted versus the safety factor with n = 1 ,  m = - 2 and k =0.1. Three different branches occur, namely fast magnetoacous- 
tic, Alfven and slow magnetoacoustic waves. Negative values for o2 indicate exponentially growing instabilities. The 
entire spectrum is well resolved and no spurious eigenvalues due to numerical coupling of different branches occur, i.e. no 
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geometry this system reduces to the usual polar co-ordinates r,  8, z. The ratio of the contravariant 
components of the magnetic field does not depend on the poloidal angle, i.e. Be/Bx=q($).  Then 
the operator B - V  has the form 

B * V = Be [a, + q( $) a,]. 
This representation yields considerable simplifications for both analytical and numerical treat- 
ment. 

3. NUMERICAL SOLUTION 

The discussion of the physics showed that two problems have to be solved. First, the equilibrium 
differential equation for the flux $ has to be solved and, secondly, a special flux co-ordinate 
system has to be constructed for every equilibrium. The finite element method is especially well 
suited to solving both parts because it can be adapted to the special geometry. On the other hand, 
it allows working in Cartesian co-ordinates, thereby avoiding the singularity at the origin of the 
inverse equilibrium problem, where r and z are solved as functions of $ and x. Consequently, we 
shall combine the finite element scheme with a mesh refinement procedure, i.e. with an adaptive 
mesh. According to the discussion of the physical model, two distinct techniques are required for 
the equilibrium problem and the normal-mode analysis. 

3.1. Equilibrium 

The differential equation (20) for the magnetic flux is solved by the standard Galerkin 
procedure. The free functions depending only on $ can be arbitrarily specified. The Galerkin 
method uses a linear expansion for $, $ = Z cli hi(r, z) ,  and solves equation (20) in its weak form. 
Integration by parts yields the matrix equation for the vector a of expansion coefficients 

&a=b, (29) 
where Mdenotes the stiffness matrix and b the force vector: 

P c 

bj= jr G h j  dr  +J k g ,  hj  d.r+Xj, 
ar2 

where X j  expresses the known value of $ along ar, . The most common two-dimensional finite 
elements are triangular and rectangular elements. We prefer rectangular elements because they 
yield more accurate results and are, in addition, better suited to representing the flux contours. 
Isoparametric mapping provides a one-to-one correspondence between the local (s, t )  and the 
global ( I ,  z) co-ordinates, as is evident from Figure 3. The co-ordinate transformation between the 
bi-unit square and the curvilinear elements is given by 

9 9 

where (rim, zim) are the global co-ordinates of node i in element m and hi,,, is the inter- 
polation function corresponding to node i of element m. The interpolation functions are defined 
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Figure 3. Two-dimensional mapping of four- to nine-node isoparametric element. (a) Bi-unit square in local s-t system. 
The crosses represent the Gauss point locations for 2 x 2 integration order. (b) Curvilinear two-dimensional element in 

global x-y system 

as follows: 
h , = $ ( l  +s ) ( l  +t) -+h, -+h, -$h, ,  

h2=i( l - s ) ( l  +t)-$h,-&h,-’h 4 9 9  

h ,  = $( 1 - s)( 1 - t )  - +h, - +h7 - ah9, 

h4 =$( 1 + S)( 1 - t )  -4h7 -+ha -$h9, 

h,=$l  -s2)(1 +t ) -$h9 ,  

h,=$l-s)(l-t’)-+h,,  

h ,=$l  +s)( l  -t’,-++,, 

h , = $ l - s ’ ) ( - t ) - ~ h , ,  

h9 = (1 -?)(I - t’), (33) 
where the local co-ordinates (s, t )  vary in the interval (- 1, 1). If the curvilinear element has one or 
more straight sides, the midside node numbers $ 6 ,  7, 8 or 9 corresponding to the straight sides 
can be omitted by setting the corresponding interpolation functions equal to zero. For details we 
refer to the book by Bathe.6 

The same interpolation functions are used to approximate the flux I) within the element in 
terms of the value at nodes 1-9: 

9 

I )m(s ,  t)= C him(s,  t ) a i m ,  (34) 
i = l  

where aim is the value of I) at the ith nodal point of element m. 
The matrix elements dij, equation (30), and the force vector b, equation (31), are evaluated in 

‘natural’ (s, t )  co-ordinates individually for each element. The integration is performed by 
Gaussian quadratures. We emphasize that the stiffness matrix &for @’/p < 1 is positive definite 
and of symmetric band form. Efficient solution techniques for the linear system used to solve 
equation (29) can be applied, these requiring a minimum amount of storage and computing 
time.,. On the other hand, a finite difference solution of our problem, equation (20), produces a 
non-symmetric matrix-a complication additional to the problem of handling the boundary 
conditions. 
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The equilibrium equation (20) is highly non-linear and requires iteration for numerical 
solution. We apply Picard iteration in the form 

V{k($")V$"' '} + C($") =0, (35) 

where the index n denotes the value of the nth iteration. Note that the relation between p and I), 
equation (16), has to be found numerically, i.e. p = p ( r ,  $", IV$"I'). If the flow is purely toroidal, 
the stiffness matrix is independent of $. Thus .,&needs to be inverted only once. 

The plasma boundary can be arbitrarily specified, e.g. pointwise. From these boundary points 
and a chosen central point we generate a net of rectangular elements; the innermost ones 
degenerate into triangles, as shown in Figure 4. As first applications we compute equilibria with 
updown symmetry, leading to a Dirichlet condition on the surface and to a von Neumann 
condition along the z=O plane. The code, of course, is not restricted to such geometries. The 
plasma behaviour is quite anisotropic with respect to directions along the magnetic field lines and 
across it. For accurate numerical solution concerning stability and transport it is necessary to use 
the flux $. as a variable. Our method shifts the mesh points in the iteration to coincide with 
surfaces $, 4 =constant, with 4 being the poloidal angle of the surface points to the magnetic 
axis-but it still works in cylindrical co-ordinates. It is easy to transform from the poloidal angle 
4 to the angle x with straight field lines. It has been pointed out by Grad' that the geometry 
converges faster than the function $. In this fashion this scheme is able to provide very accurate 
equilibrium data in ($, 8, x) co-ordinates efficiently as input for the normal-mode analysis of 
dissipative MHD. 

Results. The first applications of the code serve to test its accuracy. The surface can be specified 
pointwise or by the analytic representation 

r = A + cos ( p  + 6 sin p), z = K sin p. (36) 
With updown symmetry imposed, p varies from zero to n(O<p<n). The surface of the case 

Figure 4. (a) Finite element net ( N R  = N P  = N = 15) with four-node elements. (b) Finite element net ( N R  = N P  = N = 15) 
with eight-node elements coinciding with flux contours 
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displayed in Figure 4 is defined by K = 2.5, 6 = 045 and A = 3.0, which yields an elliptic cross- 
section with triangularity superimposed. For the four-point elements, shown in Figure 4(a), the 
mesh is constructed from the surface and an arbitrarily chosen inner point on the z-axis. The 
eight-node elements in Figure 4(b) coincide with flux contours and display the converged 
solution. 

For constant p' and T T  and zero flow, an exact solution, the Solovev solution (for details see 
Reference 9), is easily obtained and utilized to test the accuracy of the scheme. The exact solution 
is normalized such that $(r  = 0, z = 0) = 0 and hence in Figure 5 the error is shown for a varying 
number of nodal points. For bilinear elements the solution converges as 1/N,ccl/N2, where 
N ,  % N2 is the total number of grid points, whereas for biquadratic elements the error scales as 
1/Nf % l/N4. With 41 grid points in both directions the error is then less than lop6.  This accuracy 
was also confirmed numerically for equilibria with more general non-linear functions p'($) and 
TT'( I)). The eight- and nine-node elements yield superior accuracy, since a given surface is better 

Q (0.01 

61 41 

w (0,01 

N 

Figure 5. Error of i j ~  on axis for the constant current case (Solovev equilibrium): (a) for bilinear four-node elements where 
quadratic convergence in N ( N R  = N P =  N )  is obtained; (b) for biquadratic nine-node elements where quadratic conver- 

gence in N ( N R  = N P =  N )  is obtained 
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represented. Linear elements underestimate the arc length of a contour, which has to be 
compensated by a larger number of elements. 

Next, the convergence properties in the non-linear equilibrium problem are discussed. Without 
mesh rearrangement the convergence is fast. After 10 iterations the error-defined as the 
maximum difference of two subsequent iterations, 

(37) E " ( $ )  =max I($Yj- $7; )/($a- $s)I, 

where $a- t j S  denotes the difference in flux between the axis and the surface-is less than lo-', as 
is seen in Figure 6. For this case the surface is specified by the parameters K = 1.5, 6 =O and A 
= 3.0 in equation (36). The profiles are parabolic ones and are given by 

p = ~ , ( $ - $ , ) ~  and F=l+dl($-$s)2,  

with el = 1.26 x 
To represent the equilibrium in flux co-ordinates, the nodal points are rearranged in the 

iteration to coincide with =constant contours on rays 4 =constant. A converged result was 
shown in Figure 4(b). The finite elements are rearranged during the first n, (in this case ni=3)  
iterations and then in steps of n, (here n, = 3). The iteration is initiated with a constant current. 
The error of the. mesh, 

and d ,  =3-92 x lop2. 

E"(mesh)=max { I+{-'I, ~ z Y - z Y - '  J}/R:, (38) 
therefore increases in the second iteration but then decreases monotonically to a value below 

The mesh rearrangement introduces an error in $, which is seen in the maxima of &(I)) in 
Figure 6; but in the subsequent iterations the error decreases substantially and is smaller than 

at the end of the run. These local maxima in E ( $ )  are possibly due to the linear interpolation 
used for convenience in determining the flux contours. The new mesh points are obtained as a 
superposition of old and new values, e.g. 

{=a$+(l - a ) { - l ,  (39) 

to avoid oscillations of the magnetic axis. For the specific case discussed the constant is a = 0.75. 
The values of the local maxima and minima of E ( $ )  occurring in the course of iterations are 
decreased by a factor of four if the number of mesh points is doubled ( N R  = NP=41). The local 

Error 

lop 0 7  

Figure 6. Error of $, E (  $), and error of the mesh, E(mesh), as functions of the number of iterations, n 
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minima can be made smaller by  enlarging the step size for renewing the mesh, e.g. n,=4. The 
basic result is that the equilibrium is obtained in flux co-ordinates and is computed with sufficient 
accuracy. The number of iterations necessary for such an equilibrium is about three times as large 
as that for a case with fixed mesh. 

After convergence the equilibrium is given entirely in flux co-ordinates ($, 8, x) when additional 
quadratures are performed. The safety factor is evaluated by 

with F ( $ )  introduced in equation (9). The Hamada-like angle x with corresponding Jacobian J - '  
= V$ x V8 - Vx, defined in equation (28), is obtained by 

where the integration is performed on a $ = constant contour. 
Then at  each point (r, z) the values of ($, x) are known and vice versa: $ = $(r,  z) and x = ~ ( r ,  z). 

The metric coefficients needed for the normal-mode analysis in the non-orthogonal co-ordinate 
system ($, 8, x)  are lV$I2 and V$.Vx.  Other terms, such as IV8I2, are easily evaluated. The 
remaining coefficient IVxI2 is related to iV$iz and V$ -Vx  through the Jacobian J .  

The quantity IV$ I is required for the quadratures, equations (40) and (41). It is easily evaluated 
for every element. This immediately presents a problem because $ is continuous across elements 
but I V$ I is not. Additional interpolation is therefore required. It is verified that I V$ I assumes its 
minimum error at  the Gaussian points indicated in Figure 3. On the basis of these points, I V$ I is 
linearly interpolated in r and z across different elements. In this fashion the metric coefficients are 
evaluated with high accuracy. 

A simple multigrid scheme considerably reduces the CPU time. The code is then organized to 
start with an 11 x 11 mesh and then to interpolate and to transfer the results for $ and the flux co- 
ordinates to a finer grid such as 21 x 21 or 41 x 41. Then only a few iterations are required for 
large systems. It is found that a 21 x 21 grid is sufficient for most applications and a 41 x 41 net for 
the resistive tearing mode stability analysis of the code of Kerner and Tasso." It is estimated that 
an accurate solution is computed after 30 iterations in about 10-15 s on a CRAY-1s. There is no 
problem in handling up to 91 radial and poloidal grid points. 

3.2. Stability 

The numerical procedure for the normal-mode code is described here. The set of linearized 
MHD equations, equation (24), is solved by the finite element method. In order to reduce the 
order of derivatives and to obtain the weak form, we take the inner product of the system 
represented in equation (27) with the weighting function v, which has to be sufficiently regular, 
and integrate over the plasma volume: 

1 ( Y w ,  v) = (9 w, v). (42) 
In the Galerkin method used here the adjoint function satisfies the same boundary conditions as 
w. A mixed Fourier finite element representation for the state vector is applied in the special co- 
ordinate system ($, 8, x )  adopted to the specific equilibrium considered: 

m = + m  

w(r) = exp (in8) 2 w,,,($) exp (irnx). (43) 
m =  - m  
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The radial dependence of w is expressed by a linear combination of local expansion or shape 
functions, The normal-mode problem exhibits very different spatial and temporal scales, as 
manifested in the different branches of the spectrum in Figure 2 and in the very localized, almost 
singular, resistive instabilities. Special care is therefore required in choosing the appropriate 
numerical approximation for the components of the state vector, w’,j= 1,2,. . . 8. Optimal 
numerical approximation of the entire computed spectrum to the true spectrum is obtained if the 
discretization is chosen to satisfy the following two constraints in every point: 

v . u = o ,  

V.b=O. 

In ideal MHD the linearized system can be cast as a variational problem for the energy in the 
Lagrangian displacement 5, which through u =(a/&) 5 corresponds to the velocity. Uniform 
convergence of the entire computed spectrum towards the correct spectrum, i.e. good conver- 
gence for every eigenvalue, is achieved when the discretization satisfies constraint (44a). Other- 
wise, pollution is found where a specific eigenvalue converges by increased resolution, but at  the 
same time new incorrect (‘polluted’) eigenvalues are introduced. It is emphasized that equation 
(44a) is a constraint for the numerical scheme; the plasma is treated as a compressible medium. 
Since free functions in the components of u can be chosen to simplify the divergence, namely to 
bring it to the form 

V .u=( l /J) (au, /a+ +mu, +nu,), 

the constraint (44a) implies that the basic functions for u l ,  called H ,  are one order higher in II/ than 
those of u, and uj, called h: 

aH/a+ = h. (45) 
This corresponds to a ‘staggered’ mesh used in finite differences. It is sufficient that HECO, i.e. the 
derivatives need not be continuous. 

Dissipative MHD yields a non-variational problem. In order to obtain an equally good 
numerical approximation, higher-order elements, H ,  are required for b,. It is found that these 
functions have to be in C’ ,  i.e. have to have continuous derivatives. Thus cubic Hermite elements 
are used for H and quadraticelements for h. No ‘spurious’ eigenvalues then occur and V * b = 0 is 
satisfied numerically up to machine accuracy. This constraint is now also a physical condition. 
The spectra computed are again ‘pollution-free’, as is evident from Figure 2, and high-order 
convergence, usually better than l/N$, where N ,  denotes the number of radial grid points, is 
achieved. These results are given in Reference 11. This choice for the discretization introduces two 
orthogonal functions per interval, raising the order of the unknowns in the finite elements to 2 N ,  
for each component of the state vector w. 

The error introduced in the differential equations through the approximation for w is 
orthogonal to every expansion function. The Galerkin method eventually leads to the general 
eigenvalue problem d x  =AWx, where the eigenvector contains the coefficients of the expansion 
functions. The matrix d is always non-Hermitian-in this formulation even for ideal MHD- 
and W is Hermitian and positive definite. The eigenvalue 1 and the eigenvector x of the expansion 
coefficients, equation (43), are in general complex. The large-scale eigenvalue problem is solved by 
QR or QZ for all eigenvalues, by the nonsymmetric Lanczos method for a set of eigenvalues” 
and by inverse vector iteration for one eigenvalue at a time.’, The Fourier finite element 
expansion leads to a block-tridiagonal structure in the matrices with a block size b, 

b= 16M, d =  16MN,, (46) 



EQUILIBRIUM AND STABILITY OF TOKAMAKS 805 

a = 0.2 

. 
.a = 0.6 

a = 0.667 . 

at0 .868  a= 1.0’ 

, . ‘$a.=*(I.8$6, . - 
. . .. ... */ . . .  

where M is the number of poloidal Fourier harmonics in equation (43), and a total dimension d.  
For two-dimensional tokamak equilibria, different poloidal Fourier components couple and the 
dimensions quickly become large, requiring out-of-core storage. l4 

Results. Since the QR and QZ algorithms generate full matrices, only systems up to a 
dimension dE1OOO are solved by this method. Even for 1D equilibria with only one Fourier 
harmonic at a time (M=1 in equations (43) and (46)), this is not sufficient for accurate 
resolution.”-” Inverse vector iteration is therefore applied, which preserves the band structure. 

Stability with respect to resistive perturbations is discussed in the first application. Here the 
transition from a purely exponentially growing mode into an exponentially growing and also 
oscillatory, i.e. overstable, mode is emphasized. The results displayed in Figure 7 are computed by 
inverse iteration. The parameter a labels the pressure gradient in the equilibrium. For CI > 0.868 
two purely exponentially growing modes exist and for a-0.868 these two modes merge to yield a 
pair of overstable modes for a (0.868 with complex conjugate eigenvalues. The matrix dimension 
for these cases is typically d = 6000 and the re.sults are numerically converged. 

The non-adiabatic model, where the heat conductivity is taken into account in the energy 
balance, is of relevance for astrophysical studies relating to solar and stellar plasmas. The 
combined action of gravity and heat conductivity yields overstable modes. A typical result is 
shown in Figure 8. Again, pairs of purely exponentially growing modes merge and form pairs of 
overstable modes with complex conjugate eigenvalues. The oscillatory frequency of the modes 
approaches the isothermal frequency, i.e. A = iw,, where 

Re (A) 

with (47) 

with the wave vector k, and not the Alfven frequency A = iw, as was previously assumed. In this 
example the instabilities form a curve in the complex A-plane extending from the real A-axis to the 
imaginary axis. These eigenvalues were computed successively by inverse iteration. For details we 
refer to Reference 16. 

15*10-3 

0 .o 

Figure 7. Overstable modes for a tokamak-like equilibrium with varying pressure gradient. The values of a, which 
governs dp/dr, are given. The parameters are q = 2 x 10- ’, n = 1, m = -2 and k =0.2. Re 1 denotes the growth rate and Im 1, 
the oscillation frequency. For decreasing values of a, two unstable, purely exponentially growing modes merge to yield 

complex eigenvalues for a ~ 0 . 8 6 8  
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Figure 8. Overstable modes in the convection zone of stars in the presence of a magnetic field, where heat conduction and 
gravity is taken into account 

The normal-mode analysis for 2D equilibria results in large matrix dimensions d>  lo4. There is 
then a great need for a solver which preserves the sparseness-at least the band width-and 
which produces a subset of the spectrum. We propose the Lanczos algorithm for this purpose. A 
specific non-symmetric Lanczos scheme with no reorthogonalization was implemented.' When 
it was applied to resistive MHD, we were able to compute entire branches in one computer run. 
The resistive Alfven spectrum is presented in Figure 9 and the resistive Alfven sound spectrum in 
Figure 10, as computed' simultaneously by means of the Lanczos scheme. These results compare 
extremely well with those computed successively by inverse iteration. With respect to storage 
requirements, the Lanczos scheme utilizes the same matrices in band matrix storage mode as does 
the inverse vector iteration. 

These results demonstrate that the normal-mode analysis arising from quite different dissi- 
pative MHD models is solved with great accuracy. 

The normal-mode code for general two-dimensional axisymmetric equilibria has been comp- 
leted. This includes computation of equilibria together with evaluation of the metric quantities in 
the adapted flux co-ordinate system, as described above. The program has been successfully 
tested for ideal MHD in the case of the Solovev equilibrium. Dissipative spectra have also been 
correctly evaluated. These results involving convergence studies with respect to the number of 
poloidal Fourier harmonics and with respect to the number of radial finite elements will be given 
elsewhere. 

4. DISCUSSION 

An approach for analysing equilibrium, stability and transport of macroscopic tokamak plasmas 
where flows and dissipation are taken into account has been presented. The plasma behaviour is 
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Figure 9. The resistive Alfven spectrum for an equilibrium with linear profiles and pressure set to zero. The solid bar on 
the imagnary axis denotes the ideal Alfven continuum (0.40< Im Aid < 2.80). For = 5 x 10- and N = 375 intervals (d 
=4498), simultaneously evaluated by the Lanczos scheme with no orthogonalization. All eigenvalues are converged and 

agree very well with those successively computed by inverse vector iteration 
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Figure 10. The resistive Alfven and cusp spectrum for an equilibrium with linear profiles and finite pressure. The ideal 
Alfven and slow mode continua overlap. The solid bar on the imaginary axis denotes the ideal Alfven continuum 
(0.40cIm2.,<2-80). For ~ = 6  x lo-’ and N =375 intervals (d=4498), simultaneously evaluated by the Lanczos scheme 
with no orthogonalization. All eigenvalues are converged and agree very well with those successively computed by inverse 

vector iteration 

quite anisotropic with respect to directions along the magnetic field line and across it. Any 
numerical scheme has to be tailored accordingly. A good description is achieved by utilizing 
special non-orthogonal flux co-ordinates (I), 8, x). Consequently, the geometry of these flux 
contours as well as specifically prescribed boundaries have to be well resolved. Finite elements are 
especially well suited to solving such problems accurately. 

The non-linear equilibrium equation is solved by applying two-dimensional rectangular finite 
elements with up to nine nodes per element. These nodal points are arranged to coincide with the 
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flux contours. Superior resolution is obtained by biquadratic elements with eight or nine nodal 
points, as compared with bilinear four-point elements. These high-order elements yield quartic 
convergence with respect to the number of radial and poloid grid points N R  = N P =  N .  The 
mapping into the flux co-ordinate system is completed by performing quadratures along II/ 
=constant contours for evaluation of the required metric tensor elements. Here the derivatives of 
t+b have to be interpolated across different elements in order to make IVII/l continuous everywhere. 
It is concluded that two-dimensional cubic Hermite elements with continuous derivatives across 
different elements should yield better representation together with higher accuracy. The difficulty 
of performing the isoparametric mapping for such elements is well known and has to be 
appropriately taken into account. 

In the next step the equations are linearized around an equilibrium state. Here dissipation is 
usually taken into account. The normal-mode analysis is based on a Fourier expansion in the 
poloidal angle and a finite element expansion in the radial direction. This allows good resolution 
of small layers with steep gradients across specific radial flux contours, so-called resonant 
surfaces. A proper numerical approximation of the entire spectrum is aimed at, i.e. homogeneous 
convergence of the entire numerically computed spectrum to the true spectrum when the 
resolution is increased. It is established that very good numerical accuracy is achieved when a 
mixture of cubic Hermite and quadratic finite elements is applied. The components of the state 
vector are expanded into these two different sets of expansion functions in such a way that specific 
numerical constraints can be satisfied. This allows correct representation of’the relevent operators 
V - u  and V - b .  

The normal-mode analysis leads to a large-scale complex eigenvalue problem. Only for small 
systems with dimensions of up to d % 1000 are the corresponding matrices diagonalized by the QR 
or QZ algorithm. For larger systems the eigenvalues are computed by inverse vector iteration and 
by the Lanczos algorithm, where the band structure of the matrices is preserved. In conjunction 
with out-of-core storage, large systems with dimensions of up to d % 100000 can be solved for. 
Extremely interesting eigenvalue patterns have been derived. The spectrum of resistive Alfven 
modes of a static cylindrical plasma equilibrium has been analysed in detail. At present this code 
is being applied to fully 2D equilibria without flow. More details are given in References 11-15. 

We may wish to design a general scheme for the equilibrium problem and the normal-mode 
analysis. In both cases cubic Hermite expansion functions would be preferred. Thus we propose 
using two-dimensional elements with cubic Hermite expansion functions in conjunction with an 
adaptive mesh. Such a scheme may also be applied to the corresponding non-linear MHD 
simulation, which has so far been done basically by finite difference discretization. 

The Hermitian eigenvalue problem has all the good properties to ensure successful numerical 
evaluation, since a Hermitian matrix cannot be defective and since a small perturbation in the 
matrices causes only a small perturbation in the eigenvalues. On the other hand, the non- 
symmetric eigenproblem yields intrinsic obstacles. Not every general matrix can be diagonalized, 
but even for non-defective matrices the error propagation can cause severe numerical problems. 
Therefore the solution for the eigenvalues of a general non-variational problem is a major 
achievement! As a test case we solved the ideal MHD spectrum shown in Figure 2 by a non- 
variational formulation involving non-symmetric matrices and obtained excellent agreement 
with the results obtained from a variational formulation with symmetric matrices. Inverse 
iteration performs quite similarly for symmetric and non-symmetric problems. 

In the case where appropriate discretization is achieved, high accuracy is found for the solution 
of the general system. Accurate resolution of instabilities with very small growth rates, such as 
ReAE corresponding to R e l %  10-3 is 
close to the limit. Hence enlarging the system from three to six (actually to eight) unknowns in the 

is found, whereas for the Hermitian case -w2  % 
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state vector but keeping only first derivatibes with respect to time seems to improve the accuracy 
considerably. 

A final question may be: how accurately are the stability limits of general two-dimensional 
configurations determined? The point 1 = 0 or Re2 = 0 is, of course, influenced by all kinds of 
errors, especially by errors in the equilibrium and in the mapping. A consistent formulation for 
equilibrium and stability, such as discussed above, keeps these errors small. Since derivatives of 
the metric tensor elements of the non-orthogonal co-ordinate system are involved, the second 
derivatives of I) are involved and, consequently, the difference between the left-hand and right- 
hand sides of the discretized equilibrium relation (20). This error can be made small by employing 
sufficiently many grid points or by utilizing higher-order finite elements. The importance of the 
accuracy in the second derivative in the solution II/ gives another argument in favour of proposing 
bicubic elements in the future. 

The stability analysis is usually done by applying a continuation procedure using a relevant 
physical quantity, such as the ratio of the total plasma pressure to the magnetic pressure, the 
plasma beta. Then an eigenvalue is traced from the unstable region to the stable region. The 
transition point A = 0 is thus better determined. The experience from the ideal MHD stability 
calculations is that the points of marginal stability, the ‘beta limit’, can be determined within a 
margin of 10%. With increased resolution this tolerance can be made even smaller, namely to 
about 5%.  Then a given beta limit o fp=5% has to be read as B=(5+0 .5 )% or(5+0.2)%.” This 
is fully sufficient for interpreting the present results and for designing new devices. 
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